
Some 
computational 
Issues in Nash 
Equilibria and the 
Routing Game 



1. Finding (efficiently) a mixed/pure (if any) NE 
2. Establishing the quality of a NE, as compared to a 

cooperative system, namely a system in which agents 
can collaborate (recall the Prisoner’s Dilemma) 

3. In a repeated game, establishing whether and in how 
many steps the system will eventually converge to a 
NE (recall the Battle of the Sexes) 

4. Verifying that a strategy profile is a NE, 
approximating a NE, NE in resource (e.g., time, space, 
message size) constrained settings, breaking a NE by 
colluding, etc...  

Fundamental computational issues 
concerned with NE 

(interested in a Thesis, or even in a PhD?) 



Finding a NE in mixed strategies 

 How do we select the correct probability distribution? It looks like a 
problem in the continuous… 

…but it’s not, actually! It can be shown that such a distribution can be 
found by selecting for each player a best possible subset of pure 
strategies (so-called best support), over which the probability 
distribution can actually be found by solving a system of algebraic 
equations (which are in general exponential in the number of players) 

 In the practice, the problem can be solved by a simplex-like 
technique called the Lemke–Howson algorithm, which however is 
exponential in the worst case! 

Remark: Interestingly, for 2-player zero-sum games the solution can 
instead be found in polynomial time! 

 It can be shown that there exist games for which finding a NE in mixed 
strategies is a hard computational task (but we cannot talk about NP-
hardness here, since a solution is guaranteed to exist) 

 

 



Finding a NE in pure strategies 

 Exhaustive search: by definition, it is easy to see that an entry 
(p1,…,pN) of the payoff matrix is a NE if and only if pi is the maximum 
ith element of the row (p1,…,pi-1, {p(s):sSi} ,pi+1,…,pN), for each i=1,…,N. 

 However, with N players, an explicit (i.e., in normal-form) 
representation of the payoff functions is exponential in N  

 Exhaustive search for finding a pure NE is then exponential in the 
number of players (even if it is still polynomial in the input size, but the 
normal-form representation needs not be a minimal-space 
representation of the input!).  

 Alternative cheaper methods are sought: for many games of interest, a 
NE can be found in poly-time w.r.t. to the number of players (e.g., by 
using the powerful potential method). But the question is: does there 
exist a general method which guarantees to be always polynomial in N? 

 As we will see, the answer is NO (if PNP): in pure strategies, finding a 
NE is NP-hard for many games of interest (in this case, we can talk 
about NP-hardness since a solution is not guaranteed to exist) 



On the quality of a NE 

 How inefficient is a NE in comparison to an idealized 
situation in which the players would collaborate selflessly 
(in other words, the distributed system become 
cooperative), with the common goal of maximizing the 
overall social welfare, i.e., a social-choice function C 
which depends on the payoff of all the players (e.g., C is 
the sum of all the payoffs)?  

 Example: in the Prisoner’s Dilemma (PD) game, the DSE 
(and NE) incurs a total of 10 years in jail for the players. 
However, if the prisoners would cooperate by not 
implicating reciprocally, then they would stay a total of 
only 2 years in jail! 



A worst-case perspective:  
the Price of Anarchy (PoA) 

 Definition (Koutsopias & Papadimitriou, 1999): Given a 
game G and a social-choice function C, let S be the set of 
all NE. If the payoff represents a cost (resp., a utility) 
for a player, let OPT be the outcome of G minimizing 
(resp., maximizing) C. Then, the Price of Anarchy (PoA) of 
G w.r.t. C is 

 

 
 Notice that PoA1 

 Example: in the PD game, PoAPD(C)=10/2=5 
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 Internet components are made up of 
heterogeneous nodes and links, and the network 
architecture is open-based and dynamic 

 Internet users behave selfishly: they generate 
traffic, and their only goal is to download/upload 
data as fast as possible!  

 But the more a link is used, the more is slower, and 
there is no central authority “optimizing” the data 
flow… 

 So, why does Internet eventually work is such a 
jungle???  

A first case study for the existence 
and quality of a NE: selfish routing on 
the Internet 



 
Internet can be modelled by using game theory: it is a 
(congestion) game in which 

 
     players                    users 

           strategies                    paths over which users  
     can route their traffic 
Non-atomic Selfish Routing: 

• There is a large number of (selfish) users generating a 
large amount of traffic; 

• Every user controls an infinitesimal fraction of the 
traffic;  

• The traffic of a user is routed over a single path in one 
shot. 

The Internet routing game 



Mathematical model 
(multicommodity flow network) 

• A directed graph G = (V,E) and a set of N players 

• A set of commodities, i.e., source–sink pairs (si,ti), for i=1,..,k 

• Each player is associated with a commodity 

• Let Ni be the amount of players associated with (si,ti), for 
each i=1,..,k; then, the rate of traffic between si and ti is 

ri=Ni/N, with 0≤ ri ≤1 and i=1,…,k  ri = 1 

• A set Πi of paths in G between si and ti for each i=1,..,k, and 
the corresponding set of all paths Π=Ui=1,…,k Πi 

• Strategy for a player: a path joining its commodity 

• Strategy profile: a flow vector f specifying the rate of 
traffic fP routed on each path PΠ (notice that 0≤ fP ≤1, and 

that for every i=1,..,k we have PΠi fP =ri) 



• For each eE, the amount of flow absorbed by e w.r.t. f is 

fe=P Π : eP fP (notice that 0≤ fe ≤1) 

• For each edge e, a real-value latency function le(x):[0,1]+ 
of its absorbed flow x (this is a monotonically non-
decreasing function which expresses how e gets congested 
when a fraction 0≤x≤1 of the total flow f uses e) 

• Cost of a player: the latency of its used path P Π:  

    c(P)=eP  le(fe) 

• Cost (or average latency) of a flow f (social-choice 

function):  C(f)=PΠ fP·c(P)=PΠ fP·eP le(fe)=eE fe·le(fe) 

Observation: Notice that the game is not given in normal 
form! 

Mathematical model (2) 



Flows and NE 

Definition: A flow f* is a Nash flow if no 
player can improve its cost (i.e., the cost of its 
used path) by changing unilaterally its path. 

QUESTION: Given an instance 
(G,s=((s1,t1),…,(sk,tk)),r=(r1,…,rk),l=(le1,…, lem)) of 
the non-atomic selfish routing game, does it 
admit one or more Nash flows? And in the 
positive case, what is the PoA of the game? 



Latency is 
fixed 

Latency depends on 
the congestion (x is 
the fraction of flow 

using the edge) 

s t 

Example: Pigou’s game [1920] 

Is there any Nash flow for this game?  
YES! That in which all the flow travels on the upper edge  the cost 

of this flow is C(f) = 1·le1(1) +0·le2(0) = 1·1 +0·1 = 1 
Are there any other Nash flows?  
What is the PoA of this game? The optimal solution is the minimum of 

C(x)=x·x +(1-x)·1  C(x)=x2-x+1  C’(x)=2x-1  OPT for C’(x)=0, i.e., 
x=1/2C(OPT)=1/2·1/2+(1-1/2)·1=0.75 

 PoA(C) = 1/0.75 = 4/3 

Total amount of flow: 1 
le1(x)=x 

le2(x)=1 

NO, and actually that one was a DSE! 



Existence of a Nash flow 
 

 Theorem (Beckmann et al., 1956): If for each edge e 
the function x·le(x) is convex (i.e., its graphic lies below the 
line segment joining any two points of the graphic) and 
continuously differentiable (i.e., its derivative exists at 
each point in its domain and is continuous), then the Nash 
flow of (G,s,r,l) exists and is unique, and is equal to the 
optimal min-cost flow of the following instance:  

(G,s,r, λ(x)=[∫  l(t)dt]/x). 

 Remark: The optimal min-cost flow can be computed in 
polynomial time through convex programming methods. 

x 

0 



Flows and Price of Anarchy 

 Theorem 1: In a network with linear latency functions, 
the cost of a Nash flow is at most 4/3 times that of the 
min-cost flow  every instance of the non-atomic selfish 
routing satisfying this constraint has PoA ≤ 4/3. 
 

 Theorem 2: In a network with degree-p polynomials 
latency functions, the cost of a Nash flow is O(p/log p) 
times that of the min-cost flow. 

(Roughgarden & Tardos, JACM’02) 



A bad example for non-linear latencies 

Assume p>>1 

s t 

l(x)=xp 

l(x)=1 0 

1 1- 

 close to 0 

A Nash flow (of cost C=1·1p+0·1=1) is 
arbitrarily more expensive than the optimal 
flow (of cost C=(1-ε)·(1-ε)p+ ε·1 ≈ 0) 



Improving the PoA:  

the Braess’s paradox 

Does it help adding edges to improve the PoA? 

NO! Let’s have a look at the Braess Paradox 
(1968) 

v 

w 

l(x)=x 

s t 

1/2 

1/2 

Let’s assume that the players 
split. Then, the cost for each 
player (i.e., latency of a path) 
is x+1=1/2+1 = 1.5 

Cost of the flow= 2·(1.5·1/2)=1.5 

(notice this a (unique) NE and it is 
also an optimal flow) 

l(x)=x l(x)=1 

l(x)=1 



To reduce the cost of the flow, we try to add a no-
latency road between v and w. Intuitively, this should 
not worse things! 

v 

w 

x 
1 

s t 

x 1 
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  The Braess’s paradox (2) 



However, each user is tempted to change its route now, 
since the path s→v→w→t has less cost (indeed, x≤1)  

v 

w 

x 1 

s t 

x 1 

0 

If only a single user changes its 
route, then its cost decreases from 
1.5 to approximately 1, i.e.: 

c(s→v→w→t) = x+0+x ≈ 0.5 + 0.5 = 1   

  The Braess’s paradox (3) 

But the problem is that all the 
users will decide to change! 



 So, the cost of the flow f that now entirely uses the 
path s→v→w→t is: 

C(f) = 1·1+1·0+1·1=2>1.5 

 Even worse, this is a (unique) NE (the cost of the 
path s→v→w→t is 2, and the cost of the two paths 
not using (v,w) is also 2)! 

 The optimal min-cost flow is equal to that we had 
before adding the new road and so, the PoA is 
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  The Braess’s paradox (4) 

Notice it is 4/3, as in the 
Pigou’s example, and it is equal 
to the upper bound we gave 
for linear latency functions 



Convergence towards a NE 
(in pure strategies games) 

 Ok, we know that selfish routing is not so bad 
at its NE, but are we really sure this point of 
equilibrium will be eventually reached? 

 Convergence Time: number of moves made by 
the players to reach a NE from an initial 
arbitrary state 

 Question: Is the convergence time 
(polynomially) bounded in the number of 
players? 
 



Convergence towards the Nash flow 

 Positive result: If players obey to a best response 
dynamics (i.e., each player at each step greedily selects a 
strategy which maximizes its personal utility) then the 
non-atomic selfish routing game will converge to a NE. 
Moreover, for many instances (i.e., for prominent graph 
topologies and/or commodity specifications), the 
convergence time is polynomial. 

 Negative result: However, there exist instances of the 
non-atomic selfish routing game for which the 
convergence time is exponential (under some mild 
assumptions). 


